Mr. Rogers' IB Physics Topics
Syllabus 1st Quarter 2nd Quarter 3rd Quarter 4th Quarter IB Objectives
Core Thermo HL Thermo Core Energy Core Waves HL Waves HL Digital Tech
Opt SL/HL EM Waves Opt SL/HL Com Core Nuclear HL Nuclear Opt HL Relativity Opt HL Medical

The above IB topics are not all inclusive but are needed to meet the IB standards not addressed by the AP Physics C curriculum.

Mr Rogers IB Physics: Relativity

IB Physics Standards: Items directly related to the standards are shown in blue

IB Physics - Relativity (Chapter 39 Serway)

 Objectives Essential Question: H?
1. Explain what is meant by a frame of reference.

2. Explain what is meant by an inertial frame of reference (IFOR).

• the IFOR is not accelerating

• Newton's 1st and 2nd laws hold true

1. Describe what is meant by a Galilean transformation.

• Transforming from one inertial frame to another moving at constant velocity ( add vxt, vyt, vzt,  to the x, y, z, coordinates of an x, y, z, t system)

1. Calculate velocities using the Galilean transformations.

2. Describe the key points of Maxwell’s theory of electromagnetic radiation.

• oscillating electric and magnetic fields are perpendicular to each other

• oscillating electric and magnetic fields are perpendicular to the direction of wave propagation

• speed of the wave created by these fields depends only on the electric and magnetic constants of the medium through which they travel.

• the speed of electromagnetic waves in a vacuum is independent of the source's velocity.

1. Show that Galilean transformations fail if applied to a moving source of light. (Speed of electromagnetic waves in a vacuum is independent of the source's velocity.)

Concepts and Postulates of Special Relativity

1. State the two postulates of the special theory of relativity. (p. 1156)

• The Principle of Relativity: All laws of physics are the same in all inertial reference frames.

• Constancy of the Speed of Light: The speed of light in a vacuum has the same constant value in all inertial frames of reference regardless of the velocity of the observer or the source.

1. Discuss the concept of simultaneity.

• 2 simultaneous events in one reference frame are not simultaneous in another moving with respect to the first. (Two lightning bolts hitting a moving train car, p. 1158)

Relativistic Kinematics

1. Explain the concept of a light clock.

• For example, the time taken for a beam of light to bounce between two perfect, parallel mirrors can be used to measure time.

2. Define the term proper time.

to = proper time, the time measured by a clock moving with the event being measured, or the time that would be measured if the measurement were taken at rest.

1. Derive the time dilation formula.

t = to / [(1 - v2 / c2)^0.05]

1. Solve problems using the time dilation formula.

2. Draw and annotate a graph of how the Lorentz factor varies with relative velocity.

g = [1 - v2 / c2]^(-0.05)

Some Consequences of Special Relativity

1. Describe how the concept of time dilation leads to the “twin paradox”.

2. Solve one-dimensional problems involving the relativistic addition of velocities.

Relativistic mass increase

1. Define the term rest mass = mo.

2. Explain in terms of the relativistic mass equation why no mass can ever attain or exceed the speed of light in a vacuum.

m = mo / [(1 - v2 / c2)^0.05]

Mass–energy

1. State that the equivalence of mass and energy is predicted by special relativity.

2. Distinguish between rest mass energy and total energy.

Evidence to Support Special Relativity

1. Discuss muon decay as experimental evidence for time dilation and length contraction. (p. 1162)

• charge = electron, mass 207 times an electron

• produced by collisions of cosmic rays in the upper atmosphere.

• rest half life = 2.2 micro sec

• typical velocity = 0.9994c

• should not reach ground but they do

The Michelson–Morley experiment (p. 1154 Serway)

1. Outline the set-up of the Michelson–Morley experiment.

2. Outline the result of the Michelson–Morley experiment and its implication.

• the constancy of the speed of light

• there is no absolute reference frame

Mr

Mr. Rogers Teacher's Blog

Southside High School Physics Club

Mr. Rogers T-shirts

Mr. Rogers Information for Teachers

Check out other web sites created by Mr. R:

• what makes Star Trek unique
• how Star Trek compares to Star Wars
• why the star ship Enterprise needs to remain in space
• what should and shouldn't be done in space battles
• what it takes to blast off and travel the galaxy
• the basics of orbiting
Insultingly Stupid Movie Physics is one of the most humorous, entertaining, and readable physics books available, yet is filled with all kinds of useful content and clear explanations for high school, 1st semester college physics students, and film buffs.

It explains all 3 of Newton's laws, the 1st and 2nd laws of thermodynamics, momentum, energy, gravity, circular motion and a host of other topics all through the lens of Hollywood movies using Star Trek and numerous other films.

If you want to learn how to think physics and have a lot of fun in the process, this is the book for you!

 First the web site, now the book!

Mr. Rogers Home | Common Sylabus | AP Comp Sci I | AP Comp Sci II | AP Physics Mech | AP Physics E&M | AP Statistics | IB Design Tech | Southside

[ Intuitor Home | Physics | Movie Physics | Chess | Forchess | Hex | Intuitor Store |